We consider the model of population protocols permitting presence of dynamically changing edges connecting agents. Our main contribution is a new constant space phase clock allowing to count parallel time $O(n\log n)$ whp in the adopted model. This clock admits confirmation of slow leader election and in turn construction of a line (and a ring) comprising every agent in the optimal parallel time $\Theta(n\log n)$ and constant space. This improves on the currently best known upper bound $O(n^2).$ We also discuss a variant of the new clock in which utilisation of edges is replaced by interaction of agents with a unique leader. This variant provides a universal (for models with and without edges) synchronisation mechanism and is adopted in some of our efficient line replication protocols.
翻译:我们考虑的人口协议模式允许存在动态变化的边缘连接剂。 我们的主要贡献是一个新的恒定空间时钟, 允许在采用的模式中计算平行时间$O(n\log n) whp。 这个时钟认可了缓慢的领导者选举的确认, 并随后在最佳平行时间 $\ Theta(n\log n) 和恒定空间中构建了由每个代理组成的线( 和环) 。 这改善了目前最知名的上限约束值$O(n%2) 。 我们还讨论了新时钟的变式, 该时钟的使用由代理者与独有的领导者的互动所取代。 该时钟提供了一个通用的( 有边和没有边边的模型) 同步机制, 并被我们一些高效的线复制协议所采用 。