\emph{$K$-best enumeration}, which asks to output $k$ best solutions without duplication, plays an important role in data analysis for many fields. In such fields, data can be typically represented by graphs, and thus subgraph enumeration has been paid much attention to. However, $k$-best enumeration tends to be intractable since, in many cases, finding one optimum solution is \NP-hard. To overcome this difficulty, we combine $k$-best enumeration with a new concept of enumeration algorithms called \emph{approximation enumeration algorithms}, which has been recently proposed. As a main result, we propose an $\alpha$-approximation algorithm for minimal connected edge dominating sets which outputs $k$ minimal solutions with cardinality at most $\alpha\cdot\overline{\rm OPT}$, where $\overline{\rm OPT}$ is the cardinality of a mini\emph{mum} solution which is \emph{not} outputted by the algorithm, and $\alpha$ is constant. Moreover, our proposed algorithm runs in $O(nm^2\Delta)$ delay, where $n$, $m$, $\Delta$ are the number of vertices, the number of edges, and the maximum degree of an input graph.
翻译:\ emph{ $K$- 最佳查点} 要求输出美元的最佳解决方案而不重复, 它在很多领域的数据分析中起着重要作用。 在这类领域, 数据通常可以用图表表示, 因此子查点得到很多注意。 但是, 美元- 最佳查点往往难以解决, 因为在许多情况下, 找到一个最佳解决方案是 \ NP- 硬 。 为了克服这一困难, 我们将美元- 最佳查点与最近提出的称为 emph{ approxim 查点算法的新查算法概念结合起来。 作为主要结果, 我们提议对最小连接边缘占优势的数据集使用 $\ alpha$- ac- actomination 算法。 此外, $\ plegal- progal- plegal- pronision $n lax. lax. m lax lax, 我们提议的算法在最基本 $O runs in a lax $, lax\ d lax a d lax.