The fixed-template constraint satisfaction problem (CSP) can be seen as the problem of deciding whether a given primitive positive first-order sentence is true in a fixed structure (also called model). We study a class of problems that generalizes the CSP simultaneously in two directions: we fix a set $\mathcal{L}$ of quantifiers and Boolean connectives, and we specify two versions of each constraint, one strong and one weak. Given a sentence which only uses symbols from $\mathcal{L}$, the task is to distinguish whether the sentence is true in the strong sense, or it is false even in the weak sense. We classify the computational complexity of these problems for the existential positive equality-free fragment of first-order logic, i.e., $\mathcal{L} = \{\exists,\land,\lor\}$, and we prove some upper and lower bounds for the positive equality-free fragment, $\mathcal{L} = \{\exists,\forall,\land,\lor\}$. The partial results are sufficient, e.g., for all extensions of the latter fragment.
翻译:固定板块约束性满意度问题( CSP) 可以视为决定某个原始正第一阶判决在固定结构( 也称为模型) 中是否真实的问题 。 我们研究了一系列同时将 CSP 概括为两个方向的问题 : 我们设置一套 $mathcal{L} 美元 和 Boolean 连接值, 我们指定了每种限制的两种版本, 一个强一个弱两个版本 。 鉴于一个仅使用 $\ mathcal{L} 符号的句子, 任务在于区分该句子在强烈意义上是真实的, 还是在薄弱的意义上是虚假的 。 我们将这些问题的计算复杂性分类为第一阶逻辑中存在的积极无平等性零碎块, 即 $\ mathcal{L} = {centience,\ land,\lor% $, 并且我们证明正无平等碎片的上下限值, $\ mathcal{L} = spreditions,\freditions, greditionalnaln.