We characterize the structure of 2-quasi-cyclic codes over a finite field F by the so-called Goursat Lemma. With the characterization, we exhibit a necessary and sufficient condition for a 2-quasi-cyclic code being a dihedral code. And we obtain a necessary and sufficient condition for a self-dual 2-quasi-cyclic code being a dihedral code (if charF = 2), or a consta-dihedral code (if charF odd). As a consequence, any self-dual 2-quasi-cyclic code generated by one element must be (consta-)dihedral. In particular, any self-dual double circulant code must be (consta-)dihedral. Also, we show a necessary and sufficient condition that the three classes (the self-dual double circulant codes, the self-dual 2-quasi-cyclic codes, and the self-dual (consta-)dihedral codes) are coincide each other.
翻译:我们用所谓的Goursat Lemma 来给一个有限的领域F的二次二次二次周期代码结构定性。 通过定性,我们展示了一种必要和充分的条件,使一个2次二次周期代码成为双面代码。我们获得了一个必要和充分的条件,使一个自我双二次二次周期代码成为双面代码(如CharF=2),或一个共和二面代码(如CharF=2),或一个共和代号(如CharF奇)。因此,一个要素产生的任何自我双二次二次周期代码必须是(consta-)dihedral。特别是,任何自我双双双倍循环代码必须是(同级)双面代码。此外,我们展示了一种必要和充分的条件,即三个类别(自双双倍二次循环代码、自双面2次二次周期代码和自双面(consta-dihrald code)是相互一致的。