Brain function and connectivity is a pressing mystery in medicine related to many diseases. Neural connectomes have been studied as graphs with graph theory methods including topological methods. Work has started on hypergraph models and methods where the geometry and topology is significantly different. We define a hypergraph called the hyper-connectome with joint information entropy and total correlation. We give the pseudocode for computation from finite samples. We give the theoretic importance of this generalization's topology and geometry with respect to random variables and then prove the hypergraph can be necessary for prediction and classification. We confirm with a simulation study and computation. We prove the approximation for continuous random variables with finite samples. We compare connectome versus hyper-connectome for predicting schizophrenia in subjects based on a fMRI dataset using a linear support vector machine. The hyper-connectome achieves better performance in accuracy (up to 57%) and F1 score (up to 0.52) than the connectome.
翻译:脑功能和连通性是许多疾病相关医学的一个紧迫谜题。 神经连接体已经作为图表用图表理论方法( 包括地形学方法) 进行了研究。 已经在几何和地形学大不相同的高光谱模型和方法上开始了工作。 我们定义了一个称为超链接的超高光谱, 并配有联合信息 entropy 和总关联性。 我们给出了从有限样本中计算伪代码。 我们给出了这种一般化的地形学和几何对于随机变量的重要性, 然后证明了高光谱对于预测和分类来说是必要的。 我们用模拟研究和计算来确认。 我们用有限的样本来证明连续随机变量的近似值。 我们比较了基于 FMRI 数据集的元素中的超链接和超链接, 使用直线支持矢量机来预测精神分裂症。 超链接在精度( 高达57%) 和 F1 得分( 达0.52) 比连接体的功能要好。