Neyman-Scott processes (NSPs) have been applied across a range of fields to model points or temporal events with a hierarchy of clusters. Markov chain Monte Carlo (MCMC) is typically used for posterior sampling in the model. However, MCMC's mixing time can cause the resulting inference to be slow, and thereby slow down model learning and prediction. We develop the first variational inference (VI) algorithm for NSPs, and give two examples of suitable variational posterior point process distributions. Our method minimizes the inclusive Kullback-Leibler (KL) divergence for VI to obtain the variational parameters. We generate samples from the approximate posterior point processes much faster than MCMC, as we can directly estimate the approximate posterior point processes without any MCMC steps or gradient descent. We include synthetic and real-world data experiments that demonstrate our VI algorithm achieves better prediction performance than MCMC when computational time is limited.
翻译:内曼- 斯科特进程( Neyman- Scott 进程) 已在一系列领域应用到一系列分类组的模型点或时间事件。 Markov 链 Monte Carlo( MCMC) 通常用于模型中的后部取样。 但是, MCMC 混合时间可能导致由此导致的推论缓慢, 从而减缓模型学习和预测。 我们为 NSP 开发了第一个变式推论算法( VI), 并举了两个适当的变式后端点进程分布的范例。 我们的方法最大限度地缩小了VI 的包容性 Kullback- Leibel ( KL) 差异, 以获得变式参数。 我们从近似后端点过程生成样本的速度比 MC MC 更快, 因为我们可以直接估计近端点进程, 而没有 MC 步或梯度下降 。 我们包括合成和真实的数据实验, 以显示我们的VI 算法在计算时间有限时比 MC 取得更好的预测性。</s>