A family of closed simple (i.e., Jordan) curves is $m$-intersecting if any pair of its curves have at most $m$ points of common intersection. We say that a pair of such curves touch if they intersect at a single point of common tangency. In this work we show that any $m$-intersecting family of $n$ Jordan curves in general position in the plane contains $O\left(n^{2-\frac{1}{3m+15}}\right)$ touching pairs Furthermore, we use the string separator theorem of Fox and Pach in order to establish the following Crossing Lemma for contact graphs of Jordan curves: Let $\Gamma$ be an $m$-intersecting family of closed Jordan curves in general position in the plane with exactly $T=\Omega(n)$ touching pairs of curves, then the curves of $\Gamma$ determine $\Omega\left(T\cdot\left(\frac{T}{n}\right)^{\frac{1}{9m+45}}\right)$ intersection points. This extends the similar bounds that were previously established by Salazar for the special case of pairwise intersecting (and $m$-intersecting) curves. Specializing to the case at hand, this substantially improves the bounds that were recently derived by Pach, Rubin and Tardos for arbitrary families of Jordan curves.
翻译:关闭简单( 即约旦) 曲线的组合是 美元 。 如果任何一对曲线在公交点中最多有 美元 。 我们说, 如果一对曲线在一个共同点中交叉, 则一对曲线在同一个共同点中相互交叉。 在这项工作中, 我们显示, 平面一般位置上任何一对约旦曲线( 美元 ) 美元 美元 的交叉式组合在平面上包含 $left (n\\\\\\\\\\ frac{ 1\3m+15\\right) 触摸对一对一对一对 。 此外, 我们使用Fox 和 Pach 的弦分隔符 理论 来建立以下约旦曲线的交叉路过路面图 : $\ Gamma 是一个在平面一般位置上封闭的约旦曲线的 美元, 美元 Omega (n) 触碰一对曲线, $\ gammamama 的曲线确定 美元 (T\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ prr) pr) lec\\ crealcretracretracrequen case case croscrequen) rocrequest case rob cros 。 roxxxx, 。 。 rofr) 在 中, 中, routusxxxxxxxxxxxxxxxxxxxxxxxxx 。 。 。 。 。 。, 。 。 。 。 。 。 。 。 。 。, xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 。