In learning from label proportions (LLP), the instances are grouped into bags, and the task is to learn an instance classifier given relative class proportions in training bags. LLP is useful when obtaining individual instance labels is impossible or costly. In this work, we focus on the case of small bags, which allows designing more efficient algorithms by explicitly considering all consistent label combinations. In particular, we propose an EM algorithm alternating between optimizing a general neural network instance classifier and incorporating bag-level annotations. In comparison to existing deep LLP methods, our approach converges faster to a comparable or better solution. Several experiments were performed on two different datasets.
翻译:在从标签比例(LLP)中学习时,这些实例被归为包包,任务是在培训袋中学习一个按相对级别分类的例分类器。在获得单个实例标签时,LLP是有用的,不可能或费用高昂。在这项工作中,我们侧重于小袋的情况,通过明确考虑所有一致的标签组合,可以设计更有效率的算法。特别是,我们建议一种EM算法,在优化一般神经网络分类器和采用包包级注释之间交替使用。与现有的深层LLP方法相比,我们的方法会更快地趋同到一个可比或更好的解决办法。在两个不同的数据集上进行了几次实验。