The Expected Improvement (EI) method, proposed by Jones et al. (1998), is a widely-used Bayesian optimization method, which makes use of a fitted Gaussian process model for efficient black-box optimization. However, one key drawback of EI is that it is overly greedy in exploiting the fitted Gaussian process model for optimization, which results in suboptimal solutions even with large sample sizes. To address this, we propose a new hierarchical EI (HEI) framework, which makes use of a hierarchical Gaussian process model. HEI preserves a closed-form acquisition function, and corrects the over-greediness of EI by encouraging exploration of the optimization space. We then introduce hyperparameter estimation methods which allow HEI to mimic a fully Bayesian optimization procedure, while avoiding expensive Markov-chain Monte Carlo sampling steps. We prove the global convergence of HEI over a broad function space, and establish near-minimax convergence rates under certain prior specifications. Numerical experiments show the improvement of HEI over existing Bayesian optimization methods, for synthetic functions and a semiconductor manufacturing optimization problem.
翻译:Jones等人(1998)提出的期望改进(EI)方法是一种广泛使用的贝叶斯优化方法,它利用拟合的高斯过程模型进行高效的黑盒优化。然而,EI的一个关键缺点是它在利用拟合的高斯过程模型进行优化时过于贪心,即使样本量很大,也会导致次优解。为了解决这个问题,我们提出了一种新的基于层级高斯过程模型的层级EI(HEI)框架。HEI保留了一个闭合的收益函数,并通过鼓励拓展优化空间来纠正EI的过度贪心。然后,我们介绍了一些超参数估计方法,使HEI能够模拟完全贝叶斯优化过程,同时避免昂贵的马尔科夫链蒙特卡罗采样步骤。我们证明了HEI在广泛的函数空间上的全局收敛性,在某些先验规定下达到了近似极小化收敛率。数值实验显示了HEI在合成函数和半导体制造优化问题上对现有贝叶斯优化方法的改进。