The problem of scalar multiplication applied to vectors is considered in the Lee metric. Unlike in other metrics, the Lee weight of a vector may be increased or decreased by the product with a nonzero, nontrivial scalar. This problem is of particular interest for cryptographic applications, like for example Lee metric code-based cryptosystems, since an attacker may use scalar multiplication to reduce the Lee weight of the error vector and thus to reduce the complexity of the corresponding generic decoder. The scalar multiplication problem is analyzed in the asymptotic regime. Furthermore, the construction of a vector with constant Lee weight using integer partitions is analyzed and an efficient method for drawing vectors of constant Lee weight uniformly at random from the set of all such vectors is given.
翻译:Lee 指标中考虑了对矢量应用的递增量问题。 与其他指标不同, 矢量的李重量可能因产品以非零、非三边弧值增减而增加或减少。 对于加密应用来说, 这个问题特别有意义, 例如, Lee 光度代号加密系统, 因为攻击者可能使用斜度倍增来降低误差矢量的李重量, 从而降低相应的通用解码器的复杂度。 在无药可治系统中分析了 斜度倍增问题 。 此外, 对使用整数分隔段构建具有恒定李重量的矢量进行了分析, 并给出了从所有此类矢量组中随机绘制常态李重量矢量的有效方法 。