We consider the Helmholtz equation defined in unbounded domains, external to 2D bounded ones, endowed with a Dirichlet condition on the boundary and the Sommerfeld radiation condition at infinity. To solve it, we reduce the infinite region, in which the solution is defined, to a bounded computational one, delimited by a curved smooth artificial boundary and we impose on this latter a non reflecting condition of boundary integral type. Then, we apply the curved virtual element method in the finite computational domain, combined with the one-equation boundary element method on the artificial boundary. We present the theoretical analysis of the proposed approach and we provide an optimal convergence error estimate in the energy norm. The numerical tests confirm the theoretical results and show the effectiveness of the new proposed approach.


翻译:我们认为,Helmholtz方程式的定义是在无边界域内定义的,除2D边界界域外,具有边界上的迪里赫莱特条件和无穷无尽的索默菲尔德辐射条件。为了解决这个问题,我们把确定解决办法的无限区域缩小到一个有界限的计算区域,通过曲线曲线的光滑人造边界加以划定,并对后者强加一个不反映边界整体型态的条件。然后,我们在有限计算域内采用曲线虚拟要素方法,加上人造边界上的单等分边界要素方法。我们提出对拟议办法的理论分析,并在能源规范中提出最佳的趋同误估计。数字测试证实了理论结果,并表明了拟议新方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【经典书】算法C语言实现,Algorithms in C. 672页pdf
专知会员服务
82+阅读 · 2020年8月13日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年9月12日
Arxiv
0+阅读 · 2021年9月9日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【经典书】算法C语言实现,Algorithms in C. 672页pdf
专知会员服务
82+阅读 · 2020年8月13日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
相关资讯
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员