The Empirical Revenue Maximization (ERM) is one of the most important price learning algorithms in auction design: as the literature shows it can learn approximately optimal reserve prices for revenue-maximizing auctioneers in both repeated auctions and uniform-price auctions. However, in these applications the agents who provide inputs to ERM have incentives to manipulate the inputs to lower the outputted price. We generalize the definition of an incentive-awareness measure proposed by Lavi et al (2019), to quantify the reduction of ERM's outputted price due to a change of $m\ge 1$ out of $N$ input samples, and provide specific convergence rates of this measure to zero as $N$ goes to infinity for different types of input distributions. By adopting this measure, we construct an efficient, approximately incentive-compatible, and revenue-optimal learning algorithm using ERM in repeated auctions against non-myopic bidders, and show approximate group incentive-compatibility in uniform-price auctions.
翻译:经验收入最大化(ERM)是拍卖设计中最重要的价格学习算法之一:因为文献表明,它可以在多次拍卖和统一价格拍卖中为收入最大化拍卖者了解大约最佳的储备价格;然而,在这些应用中,向机构风险管理提供投入的代理商有各种动机来操纵投入,以降低产出价格;我们推广了Lavi等人(2019年)提出的奖励意识措施的定义,以量化机构风险管理产出价格因投入样本中1美元兑1美元的变化而下降的数量,并提供了这一措施的具体趋同率,即零,因为不同类型投入分配的无穷无穷无尽。我们采取这一措施,可以建立一个高效的、大约具有激励兼容性的和收入最佳学习算法,在对非微型投标人进行的多次拍卖中采用机构风险管理,并在统一价格拍卖中显示集体奖励的大致兼容性。