We investigate the algorithmic problem of selling information to agents who face a decision-making problem under uncertainty. We adopt the model recently proposed by Bergemann et al. [BBS18], in which information is revealed through signaling schemes called experiments. In the single-agent setting, any mechanism can be represented as a menu of experiments. Our results show that the computational complexity of designing the revenue-optimal menu depends heavily on the way the model is specified. When all the parameters of the problem are given explicitly, we provide a polynomial time algorithm that computes the revenue-optimal menu. For cases where the model is specified with a succinct implicit description, we show that the tractability of the problem is tightly related to the efficient implementation of a Best Response Oracle: when it can be implemented efficiently, we provide an additive FPTAS whose running time is independent of the number of actions. On the other hand, we provide a family of problems, where it is computationally intractable to construct a best response oracle, and we show that it is NP-hard to get even a constant fraction of the optimal revenue. Moreover, we investigate a generalization of the original model by Bergemann et al. [BBS18] that allows multiple agents to compete for useful information. We leverage techniques developed in the study of auction design (see e.g. [CDW12a], [AFHHM12], [CDW12b], [CDW13a], [CDW13b]) to design a polynomial time algorithm that computes the revenue-optimal mechanism for selling information.
翻译:我们调查了向面临决策问题的代理商出售信息在不确定情况下的算法问题。我们采用了Bergemann et al. [BBS18] 最近提出的模型[BBS18],该模型通过被称为实验的信号计划披露信息。在单一试剂的环境下,任何机制都可以作为实验菜单。我们的结果表明,设计收入最佳菜单的计算复杂性在很大程度上取决于该模型的指定方式。当明确给出了问题的所有参数时,我们提供了计算最优收入菜单的多元时间算法。对于以简洁的隐含描述指定了CD的模型的情况,我们表明,问题的可调控性与一个最佳反应或触觉的高效实施密切相关:当它能够高效实施时,我们提供了一种添加的FPTAS,其运行时间与行动的数量无关。另一方面,我们提供了一组问题,在计算上难以构建一个最佳反应或触摸的计算器,我们表明,对于最优收入的固定部分来说,它很难。此外,我们调查这一问题的可感应力与最佳的CD CD 设计过程密切相关:当它能有效执行时,我们用原始设计SBBS的原始设计方法,[我们通过原始的AFAFDAF 将一个原始的原始的计算到AF 。