Research in the area of secure multi-party computation using a deck of playing cards, often called card-based cryptography, started from the introduction of the five-card trick protocol to compute the logical AND function by den Boer in 1989. Since then, many card-based protocols to compute various functions have been developed. In this paper, we propose two new protocols that securely compute the $n$-variable equality function (determining whether all inputs are equal) $E: \{0,1\}^n \rightarrow \{0,1\}$ using $2n$ cards. The first protocol can be generalized to compute any doubly symmetric function $f: \{0,1\}^n \rightarrow \mathbb{Z}$ using $2n$ cards, and any symmetric function $f: \{0,1\}^n \rightarrow \mathbb{Z}$ using $2n+2$ cards. The second protocol can be generalized to compute the $k$-candidate $n$-variable equality function $E: (\mathbb{Z}/k\mathbb{Z})^n \rightarrow \{0,1\}$ using $2 \lceil \lg k \rceil n$ cards.


翻译:使用牌牌牌(通常称为纸牌加密)进行安全多党计算领域的研究始于1989年推出五张牌游戏游戏程序,以计算由 den Boer 计算的逻辑和功能。自那时以来,已经开发了许多计算各种功能的基于纸牌协议。在本文中,我们提议了两个新的协议,以安全计算$-可变平功能(确定所有输入是否相等)$:+0,1 ⁇ n\rightrow +0.1 $美元。第二个协议可以普遍化,以2美元计算$-card $-right $n。第一个协议可以普遍化,以计算任何双对称功能 $:+0. 1 ⁇ n\right\mathb% 美元,使用$$$@1\right\mathb% 美元,以及任何对称功能 $f: 0. 1\n+2美元 +2美元。第二个协议可以普遍化为 $k-cardate $-cardate $n- slable eqreal 函数 $E:\\\\\\\\\\\\\\\\\ rill card1\\\\\\\\\\\\\\\\\\ card card card card card.0,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Constant Congestion Brambles
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月8日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
0+阅读 · 2021年10月5日
VIP会员
相关主题
相关VIP内容
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
6+阅读 · 2018年12月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员