Let $\Phi$ be a uniformly random $k$-SAT formula with $n$ variables and $m$ clauses. We study the algorithmic task of finding a satisfying assignment of $\Phi$. It is known that a satisfying assignment exists with high probability at clause density $m/n < 2^k \log 2 - \frac12 (\log 2 + 1) + o_k(1)$, while the best polynomial-time algorithm known, the Fix algorithm of Coja-Oghlan, finds a satisfying assignment at the much lower clause density $(1 - o_k(1)) 2^k \log k / k$. This prompts the question: is it possible to efficiently find a satisfying assignment at higher clause densities? To understand the algorithmic threshold of random $k$-SAT, we study low degree polynomial algorithms, which are a powerful class of algorithms including Fix, Survey Propagation guided decimation, and paradigms such as message passing and local graph algorithms. We show that low degree polynomial algorithms can find a satisfying assignment at clause density $(1 - o_k(1)) 2^k \log k / k$, matching Fix, and not at clause density $(1 + o_k(1)) \kappa^* 2^k \log k / k$, where $\kappa^* \approx 4.911$. This shows the first sharp (up to constant factor) computational phase transition of random $k$-SAT for a class of algorithms. Our proof establishes and leverages a new many-way overlap gap property tailored to random $k$-SAT.
翻译:$\ phi$ 是一个单一随机的 $k$- SAT 公式, 包含 $ 变量和 $ 条款 。 我们研究找到一个满意的 $\ phi$ 的 运算任务。 众所周知, 一个满足的派任务存在的可能性很高, 条款密度高 $/ n < 2 k\log 2 -\ frac12 (\log 2+ 1) + o_ k(1), 而已知的最佳的多元时间算法, Coja- Oghlan 的固定算法, 发现一个满足的派任务, 条款密度低得多的 $(1 - o_ k(1)) 2 rk 。 这提示了问题: 能否在更高的条款密度上找到满意的派任务? 要理解随机的 $k$( + 1) + + knk) 的算法门槛, 这是一种强大的算法类别, 包括修算、 调查 kpropagational 指南, 以及信息传递和本地图表算算法等模式。 我们显示, 低度的 IP IP = = knalalalalalalalal_ k lax lax lax lax lax lax lax 1 。