Let $\Phi$ be a uniformly random $k$-SAT formula with $n$ variables and $m$ clauses. We study the algorithmic task of finding a satisfying assignment of $\Phi$. It is known that a satisfying assignment exists with high probability at clause density $m/n < 2^k \log 2 - \frac12 (\log 2 + 1) + o_k(1)$, while the best polynomial-time algorithm known, the Fix algorithm of Coja-Oghlan, finds a satisfying assignment at the much lower clause density $(1 - o_k(1)) 2^k \log k / k$. This prompts the question: is it possible to efficiently find a satisfying assignment at higher clause densities? To understand the algorithmic threshold of random $k$-SAT, we study low degree polynomial algorithms, which are a powerful class of algorithms including Fix, Survey Propagation guided decimation, and paradigms such as message passing and local graph algorithms. We show that low degree polynomial algorithms can find a satisfying assignment at clause density $(1 - o_k(1)) 2^k \log k / k$, matching Fix, and not at clause density $(1 + o_k(1)) \kappa^* 2^k \log k / k$, where $\kappa^* \approx 4.911$. This shows the first sharp (up to constant factor) computational phase transition of random $k$-SAT for a class of algorithms. Our proof establishes and leverages a new many-way overlap gap property tailored to random $k$-SAT.


翻译:$\ phi$ 是一个单一随机的 $k$- SAT 公式, 包含 $ 变量和 $ 条款 。 我们研究找到一个满意的 $\ phi$ 的 运算任务。 众所周知, 一个满足的派任务存在的可能性很高, 条款密度高 $/ n < 2 k\log 2 -\ frac12 (\log 2+ 1) + o_ k(1), 而已知的最佳的多元时间算法, Coja- Oghlan 的固定算法, 发现一个满足的派任务, 条款密度低得多的 $(1 - o_ k(1)) 2 rk 。 这提示了问题: 能否在更高的条款密度上找到满意的派任务? 要理解随机的 $k$( + 1) + + knk) 的算法门槛, 这是一种强大的算法类别, 包括修算、 调查 kpropagational 指南, 以及信息传递和本地图表算算法等模式。 我们显示, 低度的 IP IP = = knalalalalalalalal_ k lax lax lax lax lax lax lax 1 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
51+阅读 · 2020年12月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
已删除
将门创投
12+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月27日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
已删除
将门创投
12+阅读 · 2017年10月13日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员