In contrast to the somewhat abstract, group theoretical approach adopted by many papers, our work provides a new and more intuitive derivation of steerable convolutional neural networks in $d$ dimensions. This derivation is based on geometric arguments and fundamental principles of pattern matching. We offer an intuitive explanation for the appearance of the Clebsch--Gordan decomposition and spherical harmonic basis functions. Furthermore, we suggest a novel way to construct steerable convolution layers using interpolation kernels that improve upon existing implementation, and offer greater robustness to noisy data.
翻译:与许多论文采用的较为抽象的群论方法不同,我们的工作为$d$维空间中的可导向卷积神经网络提供了一种新颖且更直观的推导。该推导基于几何论证和模式匹配的基本原理。我们为Clebsch–Gordan分解和球谐基函数的出现提供了直观的解释。此外,我们提出了一种使用插值核构建可导向卷积层的新方法,该方法改进了现有实现,并对噪声数据具有更强的鲁棒性。