We present Neural-Swarm2, a learning-based method for motion planning and control that allows heterogeneous multirotors in a swarm to safely fly in close proximity. Such operation for drones is challenging due to complex aerodynamic interaction forces, such as downwash generated by nearby drones and ground effect. Conventional planning and control methods neglect capturing these interaction forces, resulting in sparse swarm configuration during flight. Our approach combines a physics-based nominal dynamics model with learned Deep Neural Networks (DNNs) with strong Lipschitz properties. We make use of two techniques to accurately predict the aerodynamic interactions between heterogeneous multirotors: i) spectral normalization for stability and generalization guarantees of unseen data and ii) heterogeneous deep sets for supporting any number of heterogeneous neighbors in a permutation-invariant manner without reducing expressiveness. The learned residual dynamics benefit both the proposed interaction-aware multi-robot motion planning and the nonlinear tracking control design because the learned interaction forces reduce the modelling errors. Experimental results demonstrate that Neural-Swarm2 is able to generalize to larger swarms beyond training cases and significantly outperforms a baseline nonlinear tracking controller with up to three times reduction in worst-case tracking errors.
翻译:我们提出了一个基于学习的运动规划和控制方法,即神经-Swarm2, 这是一种基于学习的运动规划和控制方法,它使不同多色体在温暖中能够安全飞行,无人驾驶飞机的这种操作具有挑战性,因为空气动力相互作用力量复杂,例如附近无人驾驶飞机和地面效应产生的低潮。常规规划和控制方法忽视了捕捉这些相互作用力量,导致飞行期间形成微温配置。我们的方法将基于物理的名义动态模型与学习的深神经网络(DNN)和强大的利普西茨特性结合起来。我们使用两种技术来准确预测不同多色体之间的空气动力相互作用:i)光谱正常化,以稳定和一般化的保证,以及ii)在不减少表情性的情况下,以变异性变化和异性的方式支持任何多样邻居的深层组合。所学的残余动力既有利于拟议的互动-觉多色波运动规划,也有利于非线跟踪控制设计,因为学习的相互作用力量减少了模型误差。实验结果显示,神经-空间2能够将最差的波波光动力在三次基线上向更大规模地追踪,在最差的缩小的频率上,不测算。