In this paper, we present a complete Path Planning approach divided into two main categories: Global Path Planning (GPP) and Local Path Planning (LPP). Unlike most other works, the GPP layer, instead of complex and heavy maps, uses road and intersections graphs obtained directly from internet applications like OpenStreetMaps (OSM). This map-free GPP frees us from the common area-size restrictions. In the LPP layer, we use a novel Naive-Valley-Path method (NVP) to generate a local path avoiding obstacles in the road in an extremely-low execution time period. This approach exploits the concept of valley areas around local minima, i.e., the ones always away from obstacles. We demonstrate the robustness of the system in our research platform BLUE, driving autonomously across the University of Alicante Scientific Park for more than 20 km in a 12.33 ha area. Our vehicle avoids different static persistent and non-persistent obstacles in the road and even dynamic ones, such as vehicles and pedestrians. Code is available at https://github.com/AUROVA-LAB/lib_planning.
翻译:在本文中,我们提出了一个完整的路径规划方法,分为两大类:全球路径规划(GPP)和地方路径规划(LPP)。与大多数其他工程不同,GPP层,而不是复杂和重的地图,使用直接从OpenStreetMaps(OSM)等互联网应用中获取的道路和交叉图。这个没有地图的GPP将我们从共同面积大小的限制中解脱出来。在LPP层,我们使用一种新型的Naive-Valley-Path方法(NVP),在极低的执行时间段里创造一条避免道路障碍的地方道路。这种方法利用了当地迷你马周围的山谷地区的概念,即那些总是远离障碍的山谷地区。我们展示了我们的研究平台BLUE的系统坚固性,在12.33公顷地区的Alicante大学科学公园中自主驾驶超过20公里。我们的车辆避免了道路中不同的固定的持久性和非持久性障碍,甚至动态障碍,例如车辆和行人行者。我们可在https://github.com/AUROVA/lib_ABBlanting.