In this paper, we present a complete Path Planning approach divided into two main categories: Global Path Planning (GPP) and Local Path Planning (LPP). Unlike most other works, the GPP layer, instead of complex and heavy maps, uses road and intersections graphs obtained directly from internet applications like OpenStreetMaps (OSM). This map-free GPP frees us from the common area-size restrictions. In the LPP layer, we use a novel Naive-Valley-Path method (NVP) to generate a local path avoiding obstacles in the road in an extremely-low execution time period. This approach exploits the concept of valley areas around local minima, i.e., the ones always away from obstacles. We demonstrate the robustness of the system in our research platform BLUE, driving autonomously across the University of Alicante Scientific Park for more than 20 km in a 12.33 ha area. Our vehicle avoids different static persistent and non-persistent obstacles in the road and even dynamic ones, such as vehicles and pedestrians. Code is available at https://github.com/AUROVA-LAB/lib_planning.


翻译:在本文中,我们提出了一个完整的路径规划方法,分为两大类:全球路径规划(GPP)和地方路径规划(LPP)。与大多数其他工程不同,GPP层,而不是复杂和重的地图,使用直接从OpenStreetMaps(OSM)等互联网应用中获取的道路和交叉图。这个没有地图的GPP将我们从共同面积大小的限制中解脱出来。在LPP层,我们使用一种新型的Naive-Valley-Path方法(NVP),在极低的执行时间段里创造一条避免道路障碍的地方道路。这种方法利用了当地迷你马周围的山谷地区的概念,即那些总是远离障碍的山谷地区。我们展示了我们的研究平台BLUE的系统坚固性,在12.33公顷地区的Alicante大学科学公园中自主驾驶超过20公里。我们的车辆避免了道路中不同的固定的持久性和非持久性障碍,甚至动态障碍,例如车辆和行人行者。我们可在https://github.com/AUROVA/lib_ABBlanting.

0
下载
关闭预览

相关内容

【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
5+阅读 · 2021年2月8日
Arxiv
27+阅读 · 2020年12月24日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员