This document focuses on modeling a complex situations to achieve an advantage within a competitive context. Our goal is to devise the characteristics of games to teach and exercise non-easily quantifiable tasks crucial to the math-modeling process. A computerized game to exercise the math-modeling process and optimization problem formulation is introduced. The game is named The Formula 1 Championship, and models of the game were developed in the computerized simulation platform MoNet. It resembles some situations in which team managers must make crucial decisions to enhance their racing cars up to the feasible, most advantageous conditions. This paper describes the game's rules, limitations, and five Formula 1 circuit simulators used for the championship development. We present several formulations of this situation in the form of optimization problems. Administering the budget to reach the best car adjustment to a set of circuits to win the respective races can be an approach. Focusing on the best distribution of each Grand Prix's budget and then deciding how to use the assigned money to improve the car is also the right approach. In general, there may be a degree of conflict among these approaches because they are different aspects of the same multi-scale optimization problem. Therefore, we evaluate the impact of assigning the highest priority to an element, or another, when formulating the optimization problem. Studying the effectiveness of solving such optimization problems turns out to be an exciting way of evaluating the advantages of focusing on one scale or another. Another thread of this research directs to the meaning of the game in the teaching-learning process. We believe applying the Formula 1 Game is an effective way to discover opportunities in a complex-system situation and formulate them to finally extract and concrete the related benefit to the context described.


翻译:该文件侧重于模拟复杂情况的模型,以便在竞争环境下实现优势。 我们的目标是设计游戏的特点, 教授和练习对数学模型进程至关重要的不易量化的任务。 引入了一个计算机化游戏, 以应用数学模型进程和优化问题配制。 游戏的名称是“ 公式1锦标赛”, 游戏模型是在计算机化模拟平台 MoNet 中开发的。 类似一些情况, 团队经理必须做出关键决定, 将赛车提升到可行的、 最有利的条件。 本文描述了游戏的规则、 限制和5 个公式1 电路模拟器, 用于赛车游戏的开发。 我们以优化问题的形式展示了这种情况的几种配方。 管理预算以达到一套最佳汽车调整, 以赢得相应的比赛。 关注每个大奖赛预算的最佳分配,然后决定如何使用所分配的金钱来改进汽车也是正确的做法。 一般来说, 这些方法之间可能存在一定程度的冲突, 因为它们是不同的规则、限制和5 公式1 电路模拟游戏的模拟游戏发展。 我们以优化问题的形式提出几种不同的方面, 将一个最优化的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细 。 因此的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细。 因此, 我们对一个研究的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细。 因此的精细的精细。 因此的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细的精细。 因此,

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年11月10日
Arxiv
49+阅读 · 2021年5月9日
Arxiv
5+阅读 · 2020年6月16日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员