The Fr\'echet distance is a popular similarity measure between curves. For some applications, it is desirable to match the curves under translation before computing the Fr\'echet distance between them. This variant is called the Translation Invariant Fr\'echet distance, and algorithms to compute it are well studied. The query version, however, is much less well understood. We study Translation Invariant Fr\'echet distance queries in a restricted setting of horizontal query segments. More specifically, we prepocess a trajectory in $O(n^2 \log^2 n)$ time and space, such that for any subtrajectory and any horizontal query segment we can compute their Translation Invariant Fr\'echet distance in $O(\text{polylog} \, n)$ time. We hope this will be a step towards answering Translation Invariant Fr\'echet queries between arbitrary trajectories.
翻译:Fr\'echet 距离是曲线之间最受欢迎的相似度。 对于某些应用程序, 在计算它们之间的 Fr\\'echet 距离之前, 最好先匹配正在翻译的曲线 。 这个变量叫做翻译 Invarant Fr\'echet 距离, 并且对计算它的算法进行了仔细的研究 。 但是, 查询版本远不那么为人所熟知 。 我们研究横向查询段的有限设置中翻译Invarant Fr\\'echet 距离查询 。 更具体地说, 我们预设了一个以$O( \\\\\\ \ log\ 2 n) 时间和空间的轨迹轨迹。 对于任何子轨迹和水平查询段, 我们可以用$O (\ text{polylog}\ n) 的时间来计算它们的翻译 Invariant Fr\'echet 距离 。 我们希望这是在任意轨迹之间回答翻译 Invaliversant Fr\\'echet查询的一步 。