Which samples should be labelled in a large data set is one of the most important problems for trainingof deep learning. So far, a variety of active sample selection strategies related to deep learning havebeen proposed in many literatures. We defined them as Active Deep Learning (ADL) only if theirpredictor is deep model, where the basic learner is called as predictor and the labeling schemes iscalled selector. In this survey, three fundamental factors in selector designation were summarized. Wecategory ADL into model-driven ADL and data-driven ADL, by whether its selector is model-drivenor data-driven. The different characteristics of the two major type of ADL were addressed in indetail respectively. Furthermore, different sub-classes of data-driven and model-driven ADL are alsosummarized and discussed emphatically. The advantages and disadvantages between data-driven ADLand model-driven ADL are thoroughly analyzed. We pointed out that, with the development of deeplearning, the selector in ADL also is experiencing the stage from model-driven to data-driven. Finally,we make discussion on ADL about its uncertainty, explanatory, foundations of cognitive science etc.and survey on the trend of ADL from model-driven to data-driven.


翻译:大型数据集中应该标出哪些样本,是深层次学习培训的最重要问题之一。到目前为止,许多文献中都提出了与深层次学习相关的各种主动抽样选择战略,许多文献都提出了这些战略。我们将其定义为“主动深层学习”战略,但前提是其源代码是深层模型,基础学习者被称为预测者,标签办法称为选择者。在本次调查中,对选择者指定的三个基本因素进行了总结。我们将ADL分为模型驱动的ADL和数据驱动的ADL,其选择者是否为模型驱动数据驱动的。两种主要类型的ADL的不同特点分别以不确切的方式处理。此外,数据驱动和模型驱动的ADL的不同子类也作了概括和深入讨论。对数据驱动的ADL和模型驱动的ADL的利弊进行了透彻分析。我们指出,随着深层次学习的发展,ADL的选者也正在经历从模型驱动到数据驱动的阶段。最后,我们从ADL的不确定性、解释性基础到ADL的数据驱动性研究等模式进行了讨论。

1
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年3月19日
Arxiv
126+阅读 · 2020年9月6日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
5+阅读 · 2018年10月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
相关论文
Arxiv
0+阅读 · 2021年3月19日
Arxiv
126+阅读 · 2020年9月6日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
5+阅读 · 2018年10月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Top
微信扫码咨询专知VIP会员