A common goal in comparative effectiveness research is to estimate treatment effects on pre-specified subpopulations of patients. Though widely used in medical research, causal inference methods for such subgroup analysis remain underdeveloped, particularly in observational studies. In this article, we develop a suite of analytical methods and visualization tools for causal subgroup analysis. First, we introduce the estimand of subgroup weighted average treatment effect and provide the corresponding propensity score weighting estimator. We show that balancing covariates within a subgroup bounds the bias of the estimator of subgroup causal effects. Second, we design a new diagnostic graph -- the Connect-S plot -- for visualizing the subgroup covariate balance. Finally, we propose to use the overlap weighting method to achieve exact balance within subgroups. We further propose a method that combines overlap weighting and LASSO, to balance the bias-variance tradeoff in subgroup analysis. Extensive simulation studies are presented to compare the proposed method with several existing methods. We apply the proposed methods to the Patient-centered Results for Uterine Fibroids (COMPARE-UF) registry data to evaluate alternative management options for uterine fibroids for relief of symptoms and quality of life.


翻译:比较有效性研究的一个共同目标是估计治疗对预先指定的病人子群的影响。虽然在医学研究中广泛使用,但这种分组分析的因果推断方法仍然不发达,特别是在观察研究中。在本条中,我们开发了一套分析方法和可视化工具,用于因果分组分析。首先,我们引入了分组加权平均治疗效应的估计值,并提供了相应的偏差加权加权加权比值。我们表明,分组内的平衡共差将分组因果效应估计器的偏差所约束。第二,我们设计了一个新的诊断图 -- -- 连接-S图 -- -- 以直观分组共变平衡。最后,我们提议使用重叠加权法在分组内实现准确的平衡。我们进一步提出了一种将重叠加权和LASSO相结合的方法,以平衡分组分析中的偏差权衡。我们提出了广泛的模拟研究,以比较拟议的方法与若干现有方法。我们将拟议的方法应用于Uterine Fibroid(COMPARE-UF)登记册的直诊结果,用于评估抗子体生命症状的替代质量管理选择。

0
下载
关闭预览

相关内容

最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
Top
微信扫码咨询专知VIP会员