Lane detection is an essential part of the perception sub-architecture of any automated driving (AD) or advanced driver assistance system (ADAS). When focusing on low-cost, large scale products for automated driving, model-driven approaches for the detection of lane markings have proven good performance. More recently, data-driven approaches have been proposed that target the drivable area / freespace mainly in inner-city applications. Focus of these approaches is less on lane-based driving due to the fact that the lane concept does not fully apply in unstructured, residential inner-city environments. So-far the concept of drivable area is seldom used for highway and inter-urban applications due to the specific requirements of these scenarios that require clear lane associations of all traffic participants. We believe that lane-based, mapless driving in inter-urban and highway scenarios is still not fully handled with sufficient robustness and availability. Especially for challenging weather situations such as heavy rain, fog, low-standing sun, darkness or reflections in puddles, the mapless detection of lane markings decreases significantly or completely fails. We see potential in applying specifically designed data-driven freespace approaches in more lane-based driving applications for highways and inter-urban use. Therefore, we propose to classify specifically a drivable corridor of the ego lane on pixel level with a deep learning approach. Our approach is kept computationally efficient with only 0.66 million parameters allowing its application in large scale products. Thus, we were able to easily integrate into an online AD system of a test vehicle. We demonstrate the performance of our approach under challenging conditions qualitatively and quantitatively in comparison to a state-of-the-art model-driven approach.


翻译:测道是任何自动化驾驶(AD)或高级驾驶协助系统(ADAS)的分结构概念的基本组成部分。当侧重于用于自动化驾驶的低成本大型产品时,发现车道标识的模型驱动方法已证明表现良好。最近,有人提议采用数据驱动方法,针对主要在市中心应用的可耕地/自由空间,主要针对内城应用的可耕地/自由空间。这些方法的重点较少放在基于车道的驾驶上,因为车道概念并不完全适用于不易结构的住宅内城环境。如此之远的可驾驶区概念很少用于公路和城市间应用,因为这些情形的具体要求需要所有交通参与者明确的车道联系。我们认为,在城市间和高速公路情景中,基于车道的无地图驱动方法仍然不够完善,特别是对于大雨、雾、低日光、黑暗或泥滩中反射等具有挑战性的天气状况,对车道标识的无地图检测大大降低或完全失败。我们发现,在具体设计、设计、自由车道测试的车辆测试方法中,在高轨道上,我们利用高路路路路路路路路路段的升级的系统,具体地将一个我们学习的升级的系统。我们利用了一种高路路路路路路路路路路路路路路的升级的升级的升级的升级。

1
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
109+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关资讯
VALSE Webinar 特别专题之产学研共舞VALSE
VALSE
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员