We consider the problem of fair allocation of indivisible goods to agents with submodular valuation functions, where agents may have either equal entitlements or arbitrary (possibly unequal) entitlements. We focus on share-based fairness notions, specifically, the maximin share (MMS) for equal entitlements and the anyprice share (APS) for arbitrary entitlements, and design allocation algorithms that give each agent a bundle of value at least some constant fraction of her share value. For the equal entitlement case (and submodular valuations), Ghodsi, Hajiaghayi, Seddighin, Seddighin, and Yami [EC 2018] designed a polynomial-time algorithm for $\frac{1}{3}$-maximin-fair allocation. We improve this result in two different ways. We consider the general case of arbitrary entitlements, and present a polynomial time algorithm that guarantees submodular agents $\frac{1}{3}$ of their APS. For the equal entitlement case, we improve the approximation ratio and obtain $\frac{10}{27}$-maximin-fair allocations. Our algorithms are based on designing strategies for a certain bidding game that was previously introduced by Babaioff, Ezra and Feige [EC 2021].


翻译:我们研究了将不可分割物品分配给拥有次模型估值函数的代理的公平性分配问题,其中代理可以拥有相等的配额,也可以有任意(可能不相等)的配额。我们聚焦于基于份额的公平性概念,特别是相等配额情况下的最小份额(MMS)和任意配额情况下的任意定价份额(APS),并设计了分配算法,使每个代理的价值至少达到其份额价值的某个常数比例。对于相等的配额情况(和次模型估值),Ghodsi,Hajiaghayi,Seddighin,Seddighin和Yami [EC 2018]设计了一种$\frac{1}{3}$-最大最小公平分配的多项式时间算法。我们以两种不同的方式改进了这个结果。我们考虑了任意配额的一般情况,并提出了一种多项式时间算法,保证次模型代理达到其APS的$\frac{1}{3}$。对于相等的配额情况,我们改进了逼近比率,并获得了$\frac{10}{27}$-最大最小公平分配。我们的算法是基于Babaioff,Ezra和Feige [EC 2021]先前引入的某个竞标博弈策略而设计的。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
0+阅读 · 2023年5月11日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员