Decadal temperature prediction provides crucial information for quantifying the expected effects of future climate changes and thus informs strategic planning and decision-making in various domains. However, such long-term predictions are extremely challenging, due to the chaotic nature of temperature variations. Moreover, the usefulness of existing simulation-based and machine learning-based methods for this task is limited because initial simulation or prediction errors increase exponentially over time. To address this challenging task, we devise a novel prediction method involving an information tracking mechanism that aims to track and adapt to changes in temperature dynamics during the prediction phase by providing probabilistic feedback on the prediction error of the next step based on the current prediction. We integrate this information tracking mechanism, which can be considered as a model calibrator, into the objective function of our method to obtain the corrections needed to avoid error accumulation. Our results show the ability of our method to accurately predict global land-surface temperatures over a decadal range. Furthermore, we demonstrate that our results are meaningful in a real-world context: the temperatures predicted using our method are consistent with and can be used to explain the well-known teleconnections within and between different continents.
翻译:-
通过混沌行为追踪实现十年温度预测
Decadal temperature prediction提供了量化未来气候变化的预期效应的关键信息,从而在各个领域的战略规划和决策中起着重要作用。然而,由于温度变化的混沌性质,这样长期的预测极具挑战。此外,现有的基于模拟和基于机器学习的方法的效用受限,因为初始模拟或预测误差随时间的增加呈指数增长。为了解决这一具有挑战性的任务,我们设计了一种新的预测方法,其中包括一个信息跟踪机制,旨在通过基于当前预测提供下一步预测误差的概率反馈来跟踪和适应温度动态的变化。 我们将这个信息跟踪机制(可以被认为是模型校准器)整合到我们的方法的目标函数中,以获取所需的修正,以避免误差积累。我们的结果显示了我们的方法能够准确预测十年内的全球陆地表面温度。此外,我们证明了我们的结果在现实世界的背景下是有意义的:使用我们的方法预测的温度与并且可以解释不同大陆内部和之间的众所周知的电连接一致。