Robots that can effectively understand human intentions from actions are crucial for successful human-robot collaboration. In this work, we address the challenge of a robot navigating towards an unknown goal while also accounting for a human's preference for a particular path in the presence of obstacles. This problem is particularly challenging when both the goal and path preference are unknown a priori. To overcome this challenge, we propose a method for encoding and inferring path preference online using a partitioning of the space into polytopes. Our approach enables joint inference over the goal and path preference using a stochastic observation model for the human. We evaluate our method on an unknown-goal navigation problem with sparse human interventions, and find that it outperforms baseline approaches as the human's inputs become increasingly sparse. We find that the time required to update the robot's belief does not increase with the complexity of the environment, which makes our method suitable for online applications.
翻译:能够有效理解人类行动意图的机器人对于成功开展人类机器人合作至关重要。 在这项工作中,我们应对机器人向未知目标航行的挑战,同时在存在障碍的情况下,考虑到人类对特定路径的偏好。当目标和路径偏好都事先未知时,这一问题尤其具有挑战性。为了克服这一挑战,我们提出了一个方法,用将空间分割成多面来在线编码和推断路径偏爱。我们的方法使得能够使用人类的随机观测模型共同推断目标和路径偏爱。我们用稀疏的人类干预方法评估了我们关于未知目标导航问题的方法,发现由于人类投入日益稀少,它比基线方法要差。我们发现,更新机器人信仰所需的时间不会随着环境的复杂性而增加,这使得我们的方法适合在线应用。</s>