Thresholded hybrid systems are restricted dynamical systems, where the current mode, and hence the ODE system describing its behavior, is solely determined by externally supplied digital input signals and where the only output signals are digital ones generated by comparing an internal state variable to a threshold value. An attractive feature of such systems is easy composition, which is facilitated by their purely digital interface. A particularly promising application domain of thresholded hybrid systems is digital integrated circuits: Modern digital circuit design considers them as a composition of Millions and even Billions of elementary logic gates, like inverters, GOR and Gand. Since every such logic gate is eventually implemented as an electronic circuit, however, which exhibits a behavior that is governed by some ODE system, thresholded hybrid systems are ideally suited for making the transition from the analog to the digital world rigorous. In this paper, we prove that the mapping from digital input signals to digital output signals is continuous for a large class of thresholded hybrid systems. Moreover, we show that, under some mild conditions regarding causality, this continuity also continues to hold for arbitrary compositions, which in turn guarantees that the composition faithfully captures the analog reality. By applying our generic results to some recently developed thresholded hybrid gate models, both for single-input single-output gates like inverters and for a two-input CMOS NOR gate, we show that they are continuous. Moreover, we provide a novel thresholded hybrid model for the two-input NOR gate, which is not only continuous but also, unlike the existing one, faithfully models all multi-input switching effects.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员