We discuss the applicability of a unified hyperbolic model for continuum fluid and solid mechanics to modeling non-Newtonian flows and in particular to modeling the stress-driven solid-fluid transformations in flows of viscoplastic fluids, also called yield-stress fluids. In contrast to the conventional approaches relying on the non-linear viscosity concept of the Navier-Stokes theory and representation of the solid state as an infinitely rigid non-deformable solid, the solid state in our theory is deformable and the fluid state is considered rather as a "melted" solid via a certain procedure of relaxation of tangential stresses similar to Maxwell's visco-elasticity theory. The model is formulated as a system of first-order hyperbolic partial differential equations with possibly stiff non-linear relaxation source terms. The computational strategy is based on a staggered semi-implicit scheme which can be applied in particular to low-Mach number flows as usually required for flows of non-Newtonian fluids. The applicability of the model and numerical scheme is demonstrated on a few standard benchmark test cases such as Couette, Hagen-Poiseuille, and lid-driven cavity flows. The numerical solution is compared with analytical or numerical solutions of the Navier-Stokes theory with the Herschel-Bulkley constitutive model for nonlinear viscosity.
翻译:我们讨论了统一双曲模型对连续流流体和固态机械的可适用性,以模拟非纽顿流体,特别是模拟在粘塑性流体流中的压力驱动固体流体变化,也称为降压压压压压压流体。与传统方法相比,我们讨论了统一双曲模型对连续流体流体流体和固态的可适用性,该模型也称为降压压压压压流体流体。与常规方法相比,它依赖于纳维尔-斯托克斯理论的非线性粘粘性概念以及固态作为无限僵硬的不易变形固体体的表示,我们理论中的固态是可变形的,而流体状态的“融化”则被视为一种“固态”的固态。模型和数字压力调节器的可适用性与马克斯韦尔(Maxwell)的粘粘弹性理论类似。模型和数值模型-数字模型-数字-直流的模型-直径模型-直径(HAx-Hal-Hal-BI-I-I-Ial-Ilogal-Igal-IL-IL-IL-IL-IL-I-IL-I-I-I)相比,其分析性基-C-BIL-IL-IL-I-I-I-I-I-I-B-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I