Negative control variables are sometimes used in non-experimental studies to detect the presence of confounding by hidden factors. A negative control outcome (NCO) is an outcome that is influenced by unobserved confounders of the exposure effects on the outcome in view, but is not causally impacted by the exposure. Tchetgen Tchetgen (2013) introduced the Control Outcome Calibration Approach (COCA) as a formal NCO counterfactual method to detect and correct for residual confounding bias. For identification, COCA treats the NCO as an error-prone proxy of the treatment-free counterfactual outcome of interest, and involves regressing the NCO on the treatment-free counterfactual, together with a rank-preserving structural model which assumes a constant individual-level causal effect. In this work, we establish nonparametric COCA identification for the average causal effect for the treated, without requiring rank-preservation, therefore accommodating unrestricted effect heterogeneity across units. This nonparametric identification result has important practical implications, as it provides single proxy confounding control, in contrast to recently proposed proximal causal inference, which relies for identification on a pair of confounding proxies. For COCA estimation we propose three separate strategies: (i) an extended propensity score approach, (ii) an outcome bridge function approach, and (iii) a doubly-robust approach. Finally, we illustrate the proposed methods in an application evaluating the causal impact of a Zika virus outbreak on birth rate in Brazil.
翻译:非实验研究有时会使用负向控制变量来检测隐藏因素的混淆作用。负向控制结果(NCO)是受曝光效应的反向混淆因素影响但不受曝光影响的结果。Tchetgen Tchetgen(2013)引入了控制结果校准方法(COCA)作为一种正式的负向控制反事实法,以检测和纠正混淆偏倚。对于识别,COCA将NCO作为不受处理干预的反事实结果的一种错误容易的代理,并涉及将NCO回归到不受干预的反事实结果,以及一个假定常数个体级因果效应的秩非降结构模型。在这项工作中,我们建立了针对接受处理的平均因果效应的非参数COCA识别,无需保持秩,因此能够适应单元之间无限制的效应异质性。这个非参数识别结果具有重要的实际意义,因为它提供了单一代理混淆控制,与最近提出的近源因果推断相比,后者需要一对混淆代理进行识别。对于COCA估计,我们提出了三种单独的策略:(i)一个扩展的倾向得分方法,(ii)一个结果桥接函数方法,以及(iii)一个双重鲁棒方法。最后,我们在评估巴西寨卡病毒爆发对出生率的因果影响的应用中阐明了所提出的方法。