Time series forecasting has always been a hot spot in scientific research. With the development of artificial intelligence, new time series forecasting methods have obtained better forecasting effects and forecasting performance through bionic research and improvements to the past methods. Visibility Graph (VG) algorithm is often used for time series prediction in previous research, but the prediction effect is not as good as deep learning prediction methods such as Artificial Neural Network (ANN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) prediction. The VG algorithm contains a wealth of network information, but previous studies did not effectively use the network information to make predictions, resulting in relatively large prediction errors. In order to solve this problem, this paper proposes the Deep Visibility Series (DVS) module through the bionic design of VG and the expansion of the past research, which is the first time to combine VG with bionic design and deep network. By applying the bionic design of biological vision to VG, the time series of DVS has obtained superior forecast accuracy, which has made a contribution to time series forecasting. At the same time, this paper applies the DVS forecasting method to the construction cost index forecast, which has practical significance.


翻译:时间序列预测一直是科学研究的一个热点。随着人工智能的发展,新的时间序列预测方法通过生物研究和对以往方法的改进获得了更好的预测效果和预测性能。在以前的研究中,视觉图(VG)算法经常用于时间序列预测,但预测效果不如人工神经网络(ANN)、进化神经网络(CNN)和长期短期内存网络(LSTM)预测等深层学习预测方法好。VG算法包含大量网络信息,但以前的研究没有有效地利用网络信息作出预测,从而导致相对大的预测错误。为了解决这个问题,本文通过VG的生物序列设计和过去研究的扩展提出了深可见系列(DVS)模块,这是首次将VG与生物学设计和深层网络相结合。DVS的时间序列将生物视觉的生物工程设计应用到VG,DVS的时间序列获得了优异的预测准确性预测,从而对时间序列的预测作出了贡献。与此同时,为了解决这个问题,本文通过VGVS预测方法的实用价值,将DVS预测方法应用于DS预测。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
论文浅尝 | Learning with Noise: Supervised Relation Extraction
开放知识图谱
3+阅读 · 2018年1月4日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
15+阅读 · 2021年2月19日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
论文浅尝 | Learning with Noise: Supervised Relation Extraction
开放知识图谱
3+阅读 · 2018年1月4日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员