Integral equations (IEs) are equations that model spatiotemporal systems with non-local interactions. They have found important applications throughout theoretical and applied sciences, including in physics, chemistry, biology, and engineering. While efficient algorithms exist for solving given IEs, no method exists that can learn an IE and its associated dynamics from data alone. In this paper, we introduce Neural Integral Equations (NIE), a method that learns an unknown integral operator from data through an IE solver. We also introduce Attentional Neural Integral Equations (ANIE), where the integral is replaced by self-attention, which improves scalability and model capacity. We demonstrate that (A)NIE outperforms other methods in both speed and accuracy on several benchmark tasks in ODE, PDE, and IE systems of synthetic and real-world data.
翻译:综合方程式(IES)是模拟时空系统与非局部互动的模型等式,它们在整个理论和应用科学(包括物理、化学、生物学和工程)中找到了重要的应用。虽然存在解决特定IE的有效算法,但并不存在仅从数据中学习IE及其相关动态的方法。在本文中,我们引入了神经综合等式(NIE),该方法通过IE解答器从数据中学习一个未知的整体操作器。我们还引入了注意力神经综合等式(ANIE),其中整体部分被自我注意取代,提高了可缩放性和模型能力。我们证明(A)NIE在速度和准确性上优于ODE、PDE和合成和真实世界数据的一些基准任务中的其他方法。