The use of learning-based methods for vehicle behavior prediction is a promising research topic. However, many publicly available data sets suffer from class distribution skews which limits learning performance if not addressed. This paper proposes an interaction-aware prediction model consisting of an LSTM autoencoder and SVM classifier. Additionally, an imbalanced learning technique, the multiclass balancing ensemble is proposed. Evaluations show that the method enhances model performance, resulting in improved classification accuracy. Good generalization properties of learned models are important and therefore a generalization study is done where models are evaluated on unseen traffic data with dissimilar traffic behavior stemming from different road configurations. This is realized by using two distinct highway traffic recordings, the publicly available NGSIM US-101 and I80 data sets. Moreover, methods for encoding structural and static features into the learning process for improved generalization are evaluated. The resulting methods show substantial improvements in classification as well as generalization performance.
翻译:使用基于学习的方法对车辆行为进行预测是一个很有希望的研究课题,然而,许多公开的数据集都受到阶级分布偏差的影响,如果不予处理,就会限制学习业绩。本文件提议了一个互动觉悟的预测模型,其中包括LSTM自动编码器和SVM分类器。此外,还提出了一种不平衡的学习技术,即多级平衡组合。评价表明,该方法会提高模型的性能,从而提高分类的准确性。学习模型具有良好的概括性,因此,在对不同道路配置产生的不同交通行为的无形交通数据进行评估时,必须进行一般性研究。这是通过使用两种不同的高速公路交通记录,即公开提供的NGSIM US-101和I80数据集来实现的。此外,还评估了将结构和静态特征编码到学习过程中的方法,以改进总体化。由此得出的方法显示,分类和总体性表现都有很大改进。