We address the problem of indoor layout synthesis, which is a topic of continuing research interest in computer graphics. The newest works made significant progress using data-driven generative methods; however, these approaches rely on suitable datasets. In practice, desirable layout properties may not exist in a dataset, for instance, specific expert knowledge can be missing in the data. We propose a method that combines expert knowledge, for example, knowledge about ergonomics, with a data-driven generator based on the popular Transformer architecture. The knowledge is given as differentiable scalar functions, which can be used both as weights or as additional terms in the loss function. Using this knowledge, the synthesized layouts can be biased to exhibit desirable properties, even if these properties are not present in the dataset. Our approach can also alleviate problems of lack of data and imperfections in the data. Our work aims to improve generative machine learning for modeling and provide novel tools for designers and amateurs for the problem of interior layout creation.
翻译:我们处理室内布局合成问题,这是一个对计算机图形有持续研究兴趣的专题。最新作品利用数据驱动的基因组方法取得了重大的进展;然而,这些方法依靠适当的数据集。实际上,在数据集中可能不存在理想的布局属性,例如,数据中可能缺少特定专家知识。我们建议一种方法,将专业知识(例如,关于人类工程学的知识)与基于流行的变异器结构的数据驱动生成器相结合。知识被作为可区分的缩放功能,既可以用作重量,也可以用作损失功能中的额外术语。利用这种知识,合成布局可能会偏向于展示可取的属性,即使数据集中没有这些属性。我们的方法还可以缓解数据缺乏和数据不完善的问题。我们的工作旨在改进建模的基因化机器学习,并为设计者和业余爱好者提供新工具,解决内部布局的创建问题。