Reconfigurable intelligent surfaces (RISs) allow controlling the propagation environment in wireless networks by tuning multiple reflecting elements. RISs have been traditionally realized through single connected architectures, mathematically characterized by a diagonal scattering matrix. Recently, beyond diagonal RISs (BD-RISs) have been proposed as a novel branch of RISs whose scattering matrix is not limited to be diagonal, which creates new benefits and opportunities for RISs. Efficient BD-RIS architectures have been realized based on group and fully connected reconfigurable impedance networks. However, a closed-form solution for the global optimal scattering matrix of these architectures is not yet available. In this paper, we provide such a closed-form solution proving that the theoretical performance upper bounds can be exactly achieved for any channel realization. We first consider the received signal power maximization in single-user single-input single-output (SISO) systems aided by a BD-RIS working in reflective or transmissive mode. Then, we extend our solution to single-user multiple-input multiple-output (MIMO) and multi-user MIMO systems. We show that our algorithm is less complex than the iterative optimization algorithms employed in the previous literature. The complexity of our algorithm grows linearly (resp. cubically) with the number of RIS elements in the case of group (resp. fully) connected architectures.
翻译:重新配置的智能表面(RIS)能够通过调制多个反射元素来控制无线网络的传播环境。 RIS传统上是通过单一连接结构实现的, 数学上以对角散射矩阵为特征的数学模型。 最近, 除了对角散射矩阵(BD- RIS), 被提议为RIS的一个新分支, 其分布矩阵不限于对角, 这为RIS带来了新的好处和机会。 高效的BD- RIS结构已经根据群集和完全连接的阻力网络实现了。 然而, 这些结构的全球最佳散射矩阵的封闭式解决方案还没有现成。 在本文中, 我们提供了这样一种封闭式解决方案, 证明理论性能上限可以完全实现任何频道的实现。 我们首先认为, 收到的信号在单用户单投影单投影单投影量系统中的最大化系统得到了以反射或传输模式开展工作的BD- RIS 结构的帮助。 然后, 我们把我们的解决办法扩大到了这些结构的单个用户多投影的多投影分布式组合。 我们的版本的系统在先前的变版的系统中, 我们的变版的变版机的变版的系统在了我们之前的变版的变版的系统中, 我们的变版的变版的变版的变版的变版的变版的系统在了我们的变版的变版的系统中, 我们的变版的变版的变版的系统。 我们的变版的变版的变版的变版的系统, 我们的变版的变版的变版的变版的变版的变版的变版的系统在了我们的变版的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变版的变版的变式的系统的变式的变式的变式的系统, 。