This paper settles an open and challenging question pertaining to the design of simple high-order regularization methods for solving smooth and monotone variational inequalities (VIs). A VI involves finding $x^\star \in \mathcal{X}$ such that $\langle F(x), x - x^\star\rangle \geq 0$ for all $x \in \mathcal{X}$ and we consider the setting where $F: \mathbb{R}^d \mapsto \mathbb{R}^d$ is smooth with up to $(p-1)^{th}$-order derivatives. For the case of $p = 2$,~\citet{Nesterov-2006-Constrained} extended the cubic regularized Newton's method to VIs with a global rate of $O(\epsilon^{-1})$. \citet{Monteiro-2012-Iteration} proposed another second-order method which achieved an improved rate of $O(\epsilon^{-2/3}\log(1/\epsilon))$, but this method required a nontrivial binary search procedure as an inner loop. High-order methods based on similar binary search procedures have been further developed and shown to achieve a rate of $O(\epsilon^{-2/(p+1)}\log(1/\epsilon))$. However, such search procedure can be computationally prohibitive in practice and the problem of finding a simple high-order regularization methods remains as an open and challenging question in optimization theory. We propose a $p^{th}$-order method which does \textit{not} require any binary search scheme and is guaranteed to converge to a weak solution with a global rate of $O(\epsilon^{-2/(p+1)})$. A version with restarting attains a global linear and local superlinear convergence rate for smooth and strongly monotone VIs. Further, our method achieves a global rate of $O(\epsilon^{-2/p})$ for solving smooth and non-monotone VIs satisfying the Minty condition; moreover, the restarted version again attains a global linear and local superlinear convergence rate if the strong Minty condition holds.


翻译:本文解答了一个与设计解决平滑和单调变异性(VIs) 的简单高阶调控方法有关的公开和具有挑战性的问题。 VI涉及找到 $x_star\ star\ in\ mathcal{X} $, 这样$xx, x - x\star\rangle\ geq 0$, 美元=x\ mathcal{x} 美元; 我们考虑设置 $F:\ mathb{ R_ d\ most moth} 以平滑的方式解决平滑的和单调调的( plisox) 。 如果 美元=xxxx, xxxxxxxxxxxxxxxxxxxx\star\ rgleglex\\\\\ xx} 美元。 (citexxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
75+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月27日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员