A polynomial solution to the inverse kinematic problem of the Kinova Gen3 Lite robot is proposed in this paper. This serial robot is based on a 6R kinematic chain and is not wrist-partitioned. We first start from the forward kinematics equation providing the position and orientation of the end-effector, finally, the univariate polynomial equation is given as a function of the first joint variable $\theta_{1}$. The remaining joint variables are computed by back substitution. Thus, an unique set of joint position is obtain for each root of the univariate equation. Numerical examples, simulated in ROS (Robot Operating System), are given to validate the results, which are compared to the coordinates obtained with MoveIt! and with the actual robot. A procedure to choose an optimum posture of the robot is also proposed.
翻译:本文提出了 Kinova Gen3 利特 机器人反动运动问题的多元解决方案 。 此序列机器人基于 6R 运动链, 而不是手腕分割 。 我们首先从前动运动方程式开始, 提供最终效果的方位和方向, 最后, 单象形多元方程式被指定为第一个联合变量 $\theta1} 的函数 。 其余的组合变量则通过后置替换计算 。 因此, 为单象方程式的每个根根都获得一套独特的联合位置 。 在 ROS( 机器人操作系统) 中模拟的数值示例可以验证结果, 并将其与 MoveIT 获得的坐标和实际机器人进行比较 。 还提出了选择机器人最佳姿势的程序 。