Federated learning (FL) is a popular technique to train machine learning (ML) models with decentralized data. Extensive works have studied the performance of the global model; however, it is still unclear how the training process affects the final test accuracy. Exacerbating this problem is the fact that FL executions differ significantly from traditional ML with heterogeneous data characteristics across clients, involving more hyperparameters. In this work, we show that the final test accuracy of FL is dramatically affected by the early phase of the training process, i.e., FL exhibits critical learning periods, in which small gradient errors can have irrecoverable impact on the final test accuracy. To further explain this phenomenon, we generalize the trace of the Fisher Information Matrix (FIM) to FL and define a new notion called FedFIM, a quantity reflecting the local curvature of each clients from the beginning of the training in FL. Our findings suggest that the {\em initial learning phase} plays a critical role in understanding the FL performance. This is in contrast to many existing works which generally do not connect the final accuracy of FL to the early phase training. Finally, seizing critical learning periods in FL is of independent interest and could be useful for other problems such as the choices of hyperparameters such as the number of client selected per round, batch size, and more, so as to improve the performance of FL training and testing.


翻译:联邦学习(FL)是用分散数据培训机器学习(ML)模型的流行技术。广泛的工程研究了全球模型的性能;然而,培训过程如何影响最后测试准确性仍不清楚;这一问题的加剧是,FL处决与传统的ML差别很大,客户的数据特点各异,涉及更多的超参数。在这项工作中,我们表明FL的最后测试准确性受到培训过程早期阶段的严重影响,即FL展示关键学习期,其中小梯度错误可能对最终测试准确性产生无法弥补的影响。为了进一步解释这一现象,我们将Ferish信息矩阵(FIM)的踪迹推广到FL,并界定一个新的概念,即FFFIM,这是反映每个客户从FL培训开始就具有的本地曲线。 我们的研究结果表明,FL的初始学习阶段在理解FL绩效方面发挥着关键的作用。 与许多现有的工程相比,这些工程通常不会将FL的最后准确性对最终测试的准确性与FL早期培训产生无法弥补的影响。 最后,为了进一步解释这种现象,我们将FI信息矩阵的追踪到FM的关键性学习阶段,因此,每个客户对FM的学习阶段的兴趣可以提高。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
235+阅读 · 2019年10月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
2+阅读 · 2021年11月2日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
45+阅读 · 2019年12月20日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关VIP内容
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
2+阅读 · 2021年11月2日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
45+阅读 · 2019年12月20日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Top
微信扫码咨询专知VIP会员