This is a tutorial and survey paper on kernels, kernel methods, and related fields. We start with reviewing the history of kernels in functional analysis and machine learning. Then, Mercer kernel, Hilbert and Banach spaces, Reproducing Kernel Hilbert Space (RKHS), Mercer's theorem and its proof, frequently used kernels, kernel construction from distance metric, important classes of kernels (including bounded, integrally positive definite, universal, stationary, and characteristic kernels), kernel centering and normalization, and eigenfunctions are explained in detail. Then, we introduce types of use of kernels in machine learning including kernel methods (such as kernel support vector machines), kernel learning by semi-definite programming, Hilbert-Schmidt independence criterion, maximum mean discrepancy, kernel mean embedding, and kernel dimensionality reduction. We also cover rank and factorization of kernel matrix as well as the approximation of eigenfunctions and kernels using the Nystr{\"o}m method. This paper can be useful for various fields of science including machine learning, dimensionality reduction, functional analysis in mathematics, and mathematical physics in quantum mechanics.
翻译:这是一份关于内核、内核方法及相关领域的辅导和调查文件。 我们首先在功能分析和机器学习中审查内核的历史。 然后, Mercer 内核、 Hilbert 和 Banach 空间、 复制 Kernel Hilbert 空间( RKHS) 、 Mercer 的理论及其证据、 经常使用的内核、 远距离测量内核构造、 内核的重要类别( 包括捆绑、 整体正面、 普遍、 静止和特质内核)、 内核中枢和正常化以及机能。 然后, 我们在机器学习中引进使用内核内核的种类, 包括内核支持矢量空间( RKHirbert- Schmidt) 、 最大平均值差异、 内核内核平均嵌积和内核分解的重要类别( 包括封闭、 内核内核功能功能和内核功能物理学领域的近置和内核分析。