We propose a novel multivariate nonparametric multiple change point detection method using classifiers. We construct a classifier log-likelihood ratio that uses class probability predictions to compare different change point configurations. We propose a computationally feasible search method that is particularly well suited for random forests, denoted by changeforest. However, the method can be paired with any classifier that yields class probability predictions, which we illustrate by also using a k-nearest neighbor classifier. We provide theoretical results motivating our choices. In a large simulation study, our proposed changeforest method achieves improved empirical performance compared to existing multivariate nonparametric change point detection methods. An efficient implementation of our method is made available for R, Python, and Rust users in the changeforest software package.
翻译:我们建议了一种新型的多变量非参数性多变多位变化点检测方法。 我们用分类方法构建了一种分类记录相似比例, 使用分类概率预测来比较不同的变化点配置。 我们提出了一种在计算上可行的搜索方法, 这种方法特别适合随机森林, 以变化森林为标志。 但是, 这种方法可以与任何生成分类概率预测的分类方法相匹配, 我们也可以使用 k 近距离邻居分类方法来加以说明。 我们提供了理论结果来激励我们的选择。 在一次大型模拟研究中, 我们提议的改变森林方法与现有的多变量非参数性变化点检测方法相比,取得了更好的经验性能。 在改变森林软件包中, R、 Python 和 Rust 用户可以有效地使用我们的方法。