In this work we present a hybrid physics-based and data-driven learning approach to construct surrogate models for concurrent multiscale simulations of complex material behavior. We start from robust but inflexible physics-based constitutive models and increase their expressivity by allowing a subset of their material parameters to change in time according to an evolution operator learned from data. This leads to a flexible hybrid model combining a data-driven encoder and a physics-based decoder. Apart from introducing physics-motivated bias to the resulting surrogate, the internal variables of the decoder act as a memory mechanism that allows path dependency to arise naturally. We demonstrate the capabilities of the approach by combining an FNN encoder with several plasticity decoders and training the model to reproduce the macroscopic behavior of fiber-reinforced composites. The hybrid models are able to provide reasonable predictions of unloading/reloading behavior while being trained exclusively on monotonic data. Furthermore, in contrast to traditional surrogates mapping strains to stresses, the specific architecture of the hybrid model allows for lossless dimensionality reduction and straightforward enforcement of frame invariance by using strain invariants as the feature space of the encoder.
翻译:在这项工作中,我们提出了一种基于物理的混合和数据驱动的学习方法,用于为复杂的材料行为同时进行多级模拟而建立代用模型的代用模型。我们从强而软的基于物理的基于物理的组成模型开始,并通过允许其物质参数的子集根据从数据中汲取的进化操作者的时间变化而增加其表达性。这导致一种灵活的混合模型,将数据驱动的编码器和物理解码器和物理解码器结合起来。除了对由此产生的代用数据引入由物理驱动的偏向外,解码器的内部变量还起到记忆机制的作用,使路径依赖自然产生。我们通过将FNNN编码器与若干塑料解码器结合起来,并培训模型复制纤维强化合成复合材料的宏观分解行为,从而展示了该方法的能力。混合模型能够提供卸载/再加载行为的合理预测,同时仅接受单调数据的培训。此外,与传统的代用测波波波波菌成份的压力,混合模型的具体结构允许不遗漏地减少和直接执行框架。