In this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (2020), where it is shown that in such a setting the Laplace approximation error in Hellinger distance converges to zero in the order of the noise level. Here, we prove novel error estimates for a given noise level that also quantify the effect due to the nonlinearity of the forward mapping and the dimension of the problem. In particular, we are interested in settings in which a linear forward mapping is perturbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace approximation error is of the size of the perturbation. The paper provides insight into Bayesian inference in nonlinear inverse problems, where linearization of the forward mapping has suitable approximation properties.
翻译:在本文中,我们研究了非线性巴伊西亚反面问题中后端分布的拉普尔近似值的特性。我们的工作是由Schillings等人(2020年)推动的。我们的工作动力是Schillings等人(2020年),其中显示,在这种设置中,Hellinger距离的拉普尔近近近似误差按照噪音水平的先后顺序会合为零。在这里,我们证明对一个特定噪音水平的新错误估计,它也量化了前方绘图的不线性效应和问题层面。特别是,我们感兴趣的是线性前方绘图被一个小型非线性绘图所绕过的环境。我们的结果显示,在这种情况下,拉普尔近似差误差与扰动的大小有关。本文提供了对巴耶斯在非线性问题中的推断的洞见,因为前方绘图线性具有适当的近似特性。