We propose a new method for collision-free path planning using Conditional Generative Adversarial Networks (cGANs) to transform between the robot joint space and a latent space that captures only collision-free areas of the joint space, conditioned by an obstacle map. When manipulating a robot arm, it is convenient to generate multiple plausible trajectories for further selection. Additionally, it is necessary to generate a trajectory that avoids collision with the robot itself or the surrounding environment for safety reasons. In the proposed method, various trajectories to avoid obstacles can be generated by connecting the start and goal state with arbitrary line segments in this generated latent space. Our method provides this collision-free latent space after which any planner, using any optimization conditions, can be used to generate the most suitable paths on the fly. We successfully verified this method with a simulated and actual UR5e 6-DoF robotic arm. We confirmed that different trajectories can be generated depending on the choice of optimization conditions.
翻译:我们提出一种新的方法,使用条件性生成反反转网络(cGANs)来进行无碰撞路径规划,在机器人联合空间和潜在空间之间进行转换,以只捕捉联合空间的无碰撞区域,并以障碍图为条件。在操纵机器人臂时,为进一步选择而生成多种可信的轨迹很方便。此外,为了安全起见,有必要产生一种避免与机器人本身或周围环境碰撞的轨迹。在拟议方法中,通过在生成的潜层空间中将起始点和目标状态与任意线段连接起来,可以产生各种障碍。我们的方法提供了这种无碰撞的潜在空间,在此之后,利用任何优化条件,任何规划者都可以在飞行上生成最合适的路径。我们成功地用模拟和实际的 UR5e 6-DoF 机器人臂验证了这种方法。我们确认,根据优化条件的选择,可以产生不同的轨迹。