Sentence order prediction is the task of finding the correct order of sentences in a randomly ordered document. Correctly ordering the sentences requires an understanding of coherence with respect to the chronological sequence of events described in the text. Document-level contextual understanding and commonsense knowledge centered around these events are often essential in uncovering this coherence and predicting the exact chronological order. In this paper, we introduce STaCK -- a framework based on graph neural networks and temporal commonsense knowledge to model global information and predict the relative order of sentences. Our graph network accumulates temporal evidence using knowledge of `past' and `future' and formulates sentence ordering as a constrained edge classification problem. We report results on five different datasets, and empirically show that the proposed method is naturally suitable for order prediction. The implementation of this work is publicly available at: https://github.com/declare-lab/sentence-ordering.
翻译:判决顺序预测是随机排序文档中找到正确判决顺序的任务。正确排序判决需要理解文本中描述的事件时间顺序的一致性。 围绕这些事件的文件层面背景理解和常识知识对于发现这种一致性和预测确切的时间顺序往往至关重要。 在本文中,我们引入STaCK -- -- 基于图形神经网络和时间常识的框架,以模拟全球信息并预测相对判决顺序。我们的图表网络利用“post”和“future”的知识积累时间证据,并拟定命令顺序,将其作为一个受限边缘分类问题。我们报告五个不同的数据集的结果,并用经验显示,拟议的方法自然适合秩序预测。 这项工作的实施在https://github.com/declare-lab/sentence-ording上公布。