Intelligent analysis and visualization of tables use techniques to automatically recommend useful knowledge from data, thus freeing users from tedious multi-dimension data mining. While many studies have succeeded in automating recommendations through rules or machine learning, it is difficult to generalize expert knowledge and provide explainable recommendations. In this paper, we present the recommendation of conditional formatting for the first time, together with chart recommendation, to exemplify intelligent table analysis. We propose analytical semantics over tables to uncover common analysis pattern behind user-created analyses. Here, we design analytical semantics by separating data focus from user intent, which extract the user motivation from data and human perspective respectively. Furthermore, the ASTA framework is designed by us to apply analytical semantics to multiple automated recommendations. ASTA framework extracts data features by designing signatures based on expert knowledge, and enables data referencing at field- (chart) or cell-level (conditional formatting) with pre-trained models. Experiments show that our framework achieves recall at top 1 of 62.86% on public chart corpora, outperforming the best baseline about 14%, and achieves 72.31% on the collected corpus ConFormT, validating that ASTA framework is effective in providing accurate and explainable recommendations.


翻译:智能分析和表格可视化使用技术自动推荐数据中的有用知识,从而让用户从繁琐的多层数据挖掘中解脱出来。虽然许多研究成功地通过规则或机器学习使建议自动化,但很难普及专家知识和提供解释性建议。在本文件中,我们首次提出有条件格式的建议,连同图表建议,以示范智能表格分析。我们建议对表格进行分析语义分析,以发现用户创建的分析背后的共同分析模式。在这里,我们设计分析语义,将数据重点与用户意图分开,从数据和人的角度分别提取用户动机。此外,ASTA框架是我们设计用来对多种自动化建议应用分析语义的。ASTA框架通过根据专家知识设计签名来提取数据特征,并在外地(图)或细胞一级(有条件格式)使用预先培训模型进行数据参考。实验显示,我们的框架在公共图表上实现了62.86%的顶层1,超过了14 %的正确基线,在提供ASAFA中有效的框架实现了72.31%。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员