Large-scale multiphysics simulations are computationally challenging due to the coupling of multiple processes with widely disparate time scales. The advent of exascale computing systems exacerbates these challenges, since these enable ever increasing size and complexity. Recently, there has been renewed interest in developing multirate methods as a means to handle the large range of time scales, as these methods may afford greater accuracy and efficiency than more traditional approaches of using IMEX and low-order operator splitting schemes. However, there have been few performance studies that compare different classes of multirate integrators on complex application problems. We study the performance of several newly developed multirate infinitesimal (MRI) methods, implemented in the SUNDIALS solver package, on two reacting flow model problems built on structured mesh frameworks. The first model revisits the work of Emmet et al. (2014) on a compressible reacting flow problem with complex chemistry that is implemented using BoxLib but where we now include comparisons between a new explicit MRI scheme with the multirate spectral deferred correction (SDC) methods in the original paper. The second problem uses the same complex chemistry as the first problem, combined with a simplified flow model, but run at a large spatial scale where explicit methods become infeasible due to stability constraints. Two recently developed implicit-explicit MRI multirate methods are tested. These methods rely on advanced features of the AMReX framework on which the model is built, such as multilevel grids and multilevel preconditioners. The results from these two problems show that MRI multirate methods can offer significant performance benefits on complex multiphysics application problems and that these methods may be combined with advanced spatial discretization to compound the advantages of both.
翻译:大型多物理模拟在计算上具有挑战性,因为多种进程在时间尺度上千差万别。 缩略式计算系统的出现加剧了这些挑战, 因为这些系统使得规模和复杂性不断增加。 最近,人们重新关注开发多流方法,作为处理大范围时间尺度的一种手段。 这些方法可能比使用IMEX和低级操作员分解计划的更传统的方法更具有准确性和效率。 然而,在复杂的应用问题上比较不同类别的多级多流式集成器的绩效研究很少。 我们研究了在SUNDIALS 解答软件中实施的几种新开发的多流极度(MRI)方法的性能,因为这些系统在结构化的网状框架上有两个反应性能的流模型问题。 第一个模型重审了Emet et et al.(2014)的工作, 与使用BoxLib 和低级操作员分解器的复杂流问题有关,但我们现在将新的清晰的 MRI 计划与多光谱级推迟校准(SDC) 方法进行比较。 第二个问题使用相同的复杂程度化学方法, 在第一个模型上使用相同的复杂程度的MRILI 的模型, 在两个深度的模型中, 的模型中, 的模型中, 的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型, 的模型的模型的模型的模型的模型的模型的模型的模型的模型, 的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的