Predictions of fatalities from violent conflict on the PRIO-GRID-month (pgm) level are characterized by high levels of uncertainty, limiting their usefulness in practical applications. We discuss the two main sources of uncertainty for this prediction task, the nature of violent conflict and data limitations, embedding this in the wider literature on uncertainty quantification in machine learning. We develop a strategy to quantify uncertainty in conflict forecasting, shifting from traditional point predictions to full predictive distributions. Our approach compares and combines multiple tree-based classifiers and distributional regressors in a custom auto-ML setup, estimating distributions for each pgm individually. We also test the integration of regional models in spatial ensembles as a potential avenue to reduce uncertainty. The models are able to consistently outperform a suite of benchmarks derived from conflict history in predictions up to one year in advance, with performance driven by regions where conflict was observed. With our evaluation, we emphasize the need to understand how a metric behaves for a given prediction problem, in our case characterized by extremely high zero-inflatedness. While not resulting in better predictions, the integration of smaller models does not decrease performance for this prediction task, opening avenues to integrate data sources with less spatial coverage in the future.


翻译:在PRIO-GRID月度网格(pgm)层面上对暴力冲突致死人数的预测具有高度不确定性,这限制了其在实际应用中的有效性。本文探讨了该预测任务中不确定性的两个主要来源——暴力冲突的本质特性与数据局限性,并将其置于机器学习不确定性量化的更广泛文献背景中。我们开发了一种量化冲突预测不确定性的策略,将传统点预测转向完整的预测分布估计。该方法通过定制化的自动机器学习框架,比较并融合了多种基于树的分类器与分布回归器,为每个pgm单元独立估计概率分布。同时,我们测试了将区域模型整合到空间集成中以降低不确定性的潜在途径。这些模型在提前一年的预测中,能够持续超越基于冲突历史数据构建的基准模型套件,其预测性能在已观测到冲突的区域表现尤为突出。通过评估,我们强调需要理解特定预测问题中评价指标的行为特征——在本研究中表现为极高的零膨胀特性。虽然较小模型的整合未能直接提升预测精度,但并未降低该预测任务的性能,这为未来整合空间覆盖度较低的数据源提供了可行路径。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员