Although Transformer has made breakthrough success in widespread domains especially in Natural Language Processing (NLP), applying it to time series forecasting is still a great challenge. In time series forecasting, the autoregressive decoding of canonical Transformer models could introduce huge accumulative errors inevitably. Besides, utilizing Transformer to deal with spatial-temporal dependencies in the problem still faces tough difficulties.~To tackle these limitations, this work is the first attempt to propose a Non-Autoregressive Transformer architecture for time series forecasting, aiming at overcoming the time delay and accumulative error issues in the canonical Transformer. Moreover, we present a novel spatial-temporal attention mechanism, building a bridge by a learned temporal influence map to fill the gaps between the spatial and temporal attention, so that spatial and temporal dependencies can be processed integrally. Empirically, we evaluate our model on diversified ego-centric future localization datasets and demonstrate state-of-the-art performance on both real-time and accuracy.
翻译:虽然变异器在广泛的领域取得了突破性的成功,特别是在自然语言处理(NLP)方面,但将它应用于时间序列预测仍然是一个巨大的挑战。在时间序列预测中,罐形变异器模型的自动递减解码可能不可避免地带来巨大的累积错误。 此外,利用变异器处理问题中的空间时空依赖性仍然面临困难。 ~ 为解决这些限制,这项工作是首次尝试提出一个非自动递进变异器结构,用于时间序列预测,目的是克服时间序列变异器中的时间延迟和累积错误问题。 此外,我们提出了一个新的空间时空关注机制,通过一个有学识的时间影响图建立桥梁,以填补空间和时间关注之间的空白,以便空间和时间依赖性可以整体地处理。我们很生动地评估我们关于多样化的以自我为中心的未来本地化数据集模型,并展示实时和准确性地的状态表现。