We investigate mismatched data detection for massive multi-user (MU) multiple-input multiple-output (MIMO) wireless systems in which the prior distribution of the transmit signal used in the data detector differs from the true prior. In order to minimize the performance loss caused by the prior mismatch, we include a tuning stage into the recently proposed large-MIMO approximate message passing (LAMA) algorithm, which enables the development of data detectors with optimal as well as sub-optimal parameter tuning. We show that carefully-selected priors enable the design of simpler and computationally more efficient data detection algorithms compared to LAMA that uses the optimal prior, while achieving near-optimal error-rate performance. In particular, we demonstrate that a hardware-friendly approximation of the exact prior enables the design of low-complexity data detectors that achieve near individually-optimal performance. Furthermore, for Gaussian priors and uniform priors within a hypercube covering the quadrature amplitude modulation (QAM) constellation, our performance analysis recovers classical and recent results on linear and non-linear massive MU-MIMO data detection, respectively.
翻译:我们调查了大规模多用户(MU)多输入多输出无线系统的数据检测不匹配,在该系统中,数据探测器使用的传输信号先前的发送方式不同于以前的真信号。为了尽量减少先前不匹配造成的性能损失,我们包括了对最近提议的大型IMO近似电文传递(LAMA)算法的调试阶段,该算法使得能够以最佳和亚最佳参数调控来开发数据探测器。我们显示,经过仔细选择的先行能够设计比使用最优化前期数据的LAMA更简单、更高效的数据检测算法,同时实现近最佳的错误率性能。特别是,我们证明,对精确的先行的硬件友好近似能够设计低复杂度数据探测器,使个人性能达到接近最佳的性能。此外,对于高斯的前科和统一的前科,在覆盖四极调(QAM)的超立方管星座内,我们的性能分析分别恢复线性和非线性和非线性大规模MIMIM数据探测的古型和近期结果。