Object detection and single image super-resolution are classic problems in computer vision (CV). The object detection task aims to recognize the objects in input images, while the image restoration task aims to reconstruct high quality images from given low quality images. In this paper, a two-stage framework for object detection and image restoration is proposed. The first stage uses YOLO series algorithms to complete the object detection and then performs image cropping. In the second stage, this work improves Swin Transformer and uses the new proposed algorithm to connect the Swin Transformer layer to design a new neural network architecture. We name the newly proposed network for image restoration SwinOIR. This work compares the model performance of different versions of YOLO detection algorithms on MS COCO dataset and Pascal VOC dataset, demonstrating the suitability of different YOLO network models for the first stage of the framework in different scenarios. For image super-resolution task, it compares the model performance of using different methods of connecting Swin Transformer layers and design different sizes of SwinOIR for use in different life scenarios. Our implementation code is released at https://github.com/Rubbbbbbbbby/SwinOIR.


翻译:对象探测任务旨在识别输入图像中的物体,而图像恢复任务则旨在从给定的低质量图像中重建高质量的图像。在本文中,提出了一个用于天体探测和图像恢复的两阶段框架。第一阶段使用YOLO系列算法完成天体探测,然后进行图像裁剪。在第二阶段,这项工作改进了Swin变换器,并使用新的拟议算法将Swin变换器层连接起来,设计一个新的神经网络结构。我们命名了新提议的图像恢复 SwinOIR 网络。这项工作比较了在 MS COCO 数据集和 Pascal VOC 数据集上不同版本的 YOLO 探测算法模型的模型性能,以显示不同情景下框架第一阶段的不同 YOLO 网络模型是否适合。对于图像超分辨率任务,它比较了使用不同方法连接 Swin变换器层和设计不同尺寸的 SwinOIR 网络结构设计用于不同生命情景的模型性能。我们的执行代码在 https://githubrubbbbbbbbby 上发布。</s>

0
下载
关闭预览

相关内容

【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2023年5月8日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关论文
Arxiv
1+阅读 · 2023年5月8日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
24+阅读 · 2020年3月11日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
12+阅读 · 2019年1月24日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员