In this work, we present a reinforcement learning (RL) based approach to designing parallel prefix circuits such as adders or priority encoders that are fundamental to high-performance digital design. Unlike prior methods, our approach designs solutions tabula rasa purely through learning with synthesis in the loop. We design a grid-based state-action representation and an RL environment for constructing legal prefix circuits. Deep Convolutional RL agents trained on this environment produce prefix adder circuits that Pareto-dominate existing baselines with up to 16.0% and 30.2% lower area for the same delay in the 32b and 64b settings respectively. We observe that agents trained with open-source synthesis tools and cell library can design adder circuits that achieve lower area and delay than commercial tool adders in an industrial cell library.
翻译:在这项工作中,我们展示了一种基于强化学习(RL)的方法来设计平行的前置电路,例如对于高性能数字设计至关重要的添加器或优先编码器。与以往的方法不同,我们的方法设计了纯粹通过在循环中合成学习的方程式。我们设计了一个基于网格的状态代表器和用于建造法律前置电路的RL环境。在这个环境中受过培训的深革命RL代理器产生了前置添加器电路,Pareto在32b和64b设置中分别将现有基线的16.0%和30.2%降低到同样的延迟时间。我们观察到,接受过开放源合成工具和细胞图书馆培训的代理器可以设计出比工业细胞图书馆中商业工具添加器更低面积和延迟的附加电路。